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ORDER, TOPOLOGY AND PREFERENCE

Murat R. Sertel

This is a reasonably self-contained paper bringing some standard

order-related and topological notions, facts and methods to bear on a

number of central topics in the theory of preference and, as a nat-

ural but henceforth unmentioned correlate, the theory of optimization.

Much of the material brought to bear is well-known to economic theor-

ists and even more so to mathematicians. Part of it, however, falls

into that growing class of mathematical results motivated by social

analysis, and is, I think, new. Such results will be found inter-

spersed throughout Section 3 as extensions of the basics of Nachbin's

[9] work. Among such results, however, the two theorems under 3.4

and 3.5 are probably the more important to note.

The topic of Section 4, the theory of preference, is largely but

not solely the motivation for the study as a whole. Thus, some of

the facts and notions presented before that section are not used at

all in Section 4. Sections 1-2 are preparatory. Section 3 exploits

some consequences of connectivity, especially from the viewpoint of

normally preordered spaces. thus extending the early work of Eilenberg

[5] and Nachbin [9] on order and topology.

Section 4 begins with the subsection 4.1 in which Debreu's

celebrated first representation theorem [1, Theorem 1, p. 260] is

made obsolete by the more general corollary (4.1.1) to theorems

(3.4) and (3.5), as a result of which Debreu's assumption of
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separability for the space of prospects can be dropped. [Thus,

from the viewpoint of economic theory, 3.4 and 3.5 may be looked

upon as lemmas aimed at 4.1.1, which is then "elevated" to theorem

status.]

The next subsection, 4.2, uses this and [10] to extend the

foundations of Gorman's [6] insightful characterization of the

structure of preferences. It is indicated how this significantly

extends that characterization as a whole by allowing two of Gorman's

postulates (separability and arcwise connectivity) for the space

of prospects to be relaxed to a much weaker postulate (connectivity).

The content of the brief final subsection, 4.3, is described

quite well by its title.

To the reader minimally knowledgeable in topology, this study

is mathematically self-contained. In any case, Dugundji's

Topology [4] will be our standard reference in this domain. [N.B.:

Dugundji uses 'path' for 'arc'.]

Standing Terminology and Notation: The set of real numbers

will be denoted by R, while E will denote k-dimensional

Euclidean space (k = 0, 1, ...). Thus, E1 will stand for

R with the usual (equivalently, the order-) topology. Given

a set X, a relation on X will mean a subset rC X x x

of the Cartesian product of X upon itself. A preference

relation is a complete transitive relation, and a utility

function is simply a real-valued function preserving a prefer-

ence relation. [See further terminology given in Section 1.]
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A set X on which a preference-relation is postulated is a

space of prospects. The last three underlined terms will

seldom be used from here on. 'We' will mean 'you (the reader)

and I (the author)'; 'iff' will mean 'if and only if'; 'nbd'

will mean 'neighborhood'.



-6-

1. Preliminaries

Let r C X X X = X 2 be a relation on a set X. Denote

rx {y E Xl (x, y) e r}

(X £X).

xr = {y Xl (y, x) F r}

A subset A C X is said to be increasing iff rA C A, and it is

said to be decreasing iff ATC A. Clearly-, A CX is increasing

iff its complement, denoted by AC , is decreasing. Also, it is

plain that any intersection and any union of increasing (decreasing)

sets is increasing (decreasing). Thus, each set A C X determines

a unique smallest increasing (decreasing) set, denoted by AA (AA),

which contains A. In fact, if r is transitive, then the relation

AC X2 arising from this notation by setting A = r U A (where

A -'{(x, x)I x X} is the diagonal of X2 ) is the smallest re-

flexive relation containing r, and we have

AA = rA U A, AA = Ar U A (A C X). [Let Q C X2. Q is said

to be.reflexive iff S2 DA, transitive iff £QA D 2A for all

A C X, antisymmetric iff o n Q-1 C A , and complete (or total

or decisive) iff 2 U -1l = X 2, where f1 =- {(y, x) I (x, y) E }2

denotes the converse of Q2. is called a preorder on X iff

it is reflexive and transitive; it is called a partial order on X

iff it is a preorder on X and antisymmetric; finally, it is called

a total order on X iff it is a complete partial order on X].

The proofs of the following two useful facts are entirely

straightforward and, hence, omitted.
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1.1 Exercise:, Let r C X2 be a relation on a set X. Then r

is transitive only if A = r U A is transitive and iff

rF' is transitive.

1.2 Exercise: Let r C X 2 be a-relation on a set X,: such that

r is complete and antisymmetric. Then

1.2.1 r is irreflexive (i.e., r n A = 0) and so is r-'; in partic-

ular, r= (rc)- l \ and r- 1 =rc \ .

1.2.2 The three relations r, A and r- 1 are pairwise disjoint and

exhaust X2 : X2 = U AU r- 1 .

1.2.3 A = ¢rc)l

The following is really a continuation of the above

exercises, but is recorded separately because a proof is

included.

1.3 Proposition: Let r C X2 be a relation on a set X, such that

rc is complete and antisymmetric. Then

1.3.1 r is transitive iff rC is transitive.

1.3.2 r 'is transitive iff A = r U A is transitive.

Proof: (ad 1.3.1 "if"): Assume Fc transitive. Then (rc) - l,

too, is transitive; furthermore, by 1.2.1, F = (,c)- 1 \ A.

Suppose (x, y), (y, z) E r. To show that (x, z) E r, it
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suffices, then, to show that (x, z) t A. Suppose (x, z) e A.

Then (z, y), (y, z) Er.; hence, (z, y), (y, z) e (rC)l.

Thus, antisymmetry of rc implies that y = z, contradicting

that (y, z) c (c) - 1 \ A. We conclude that (x, z) t A,

i.e., that (x, z).E r and that r is transitive.

(ad 1.3.1 "only if"): Assume r transitive and suppose

(x, y), (y, z) C rc . Then (y, x), (z, y) (rc)
-

1. If y = x

or z = y, then (x, z) E rc, leaving nothing to prove. So

assume x # y f z. Then, using 1.2.1, we have (y, x), (z, y)

E (rC) - ' \ A= P. Transitivity of r thus yields (z, x)

E r c(r) - 1 , so that (x, z) c rc , showing rc to be

transitive.

(ad 1.3.2): As "only if" is already given in 1.1 (and

stated here merely for completeness), we prove "if" only. For

that, simply observe that antisymmetry combined with reflexivity

for rc yields r U A = (Pc) - 1, so that 1.3.1 ensures r to

be transitive if (Fc) -= A is so.

2. Some Basic Order-Topological Facts

The facts and notions presented in this section extend

basic propositions demonstrated or notions used by Nachbin

[ 9, pp. 26-27]. A relation r CX 2 on a topological space X is

said to be semiclosed iff rx and xr are both closed for each

x E X; it is said to be closed iff it is closed in X2

2.1 Proposition: Let X be a topological space and FC X2 a re-

lation on X.
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2.1.1 If for every (x, y) E rC there exist disjoint nbds U and V

of x and y, respectively, such that either U us increasing

or V is decreasing, then r is closed.

2.1.2 If r is a closed preorder, then for each (x, y) s r

there exists an increasing nbd U'of x and a decreasing nbd

V of y such that Un V = 0.

2.1.3 If r is a:closed preorder,.then it is semiclosed.

Proof: (ad 2.1.1): Suppose (x, y) c rC, and that U, V are as

described in the hypothesis. Then U x V is a nbd of (x, y).

Furthermore, if (u, v) E (U x V) n r, then u E vr, so that,

contrary to assumption, neither can U be increasing, nor V

decreasing, since U n V = . Thus, U x V n r = 0, whereby

pr is open, i.e., r is closed.

tad 2.1.2): Suppose (x, y) E rP, choose a nbd U' x V'

of (x, y) not. meeting r, and define U = U t, V = V'r, so

that, indeed, U is increasing and V decreasing, while

U x VD U' x V' is a nbd of (x, y). But Uf V = , for if

z E U (so that there exists u E U' with z C ru) and z E V

(so that there exists v E V' with v E rz), then transitivity

of P implies that U' x V' meets r (since now v c rz C rru

G Pu, i.e., (u, v) E F), a contradiction.

(ad 2.1.2): Given x E X, we show that

imitation shows that xr is also closed. If

rx is closed;

rx = X, then

: ..

I
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it is closed trivially. So assume (rx)c i 0 and let y c (rx)c

Then, by 2.1.2, there exists an increasing nbd U of x and a

decreasing nbd V of y with U nV = 0.

But rx is the smallest increasing set containing x, so that

rx C U and, hence, rx ) V = 0. This shows that rx is

closed, and completes the proof.

From the fact that A = r U A and is reflexive, the semiclosedness

(closedness) of A when X is Frechet (Hausdorff) immediately yields that

2.2 Corollary: Let X be T1iT 2 ) and r CX 2 . If r is transitive, then

A is a preorder, and if -r is semiclosed (closed), then so is -A,

whereby A now becomes a semiclosed (closed) preorder on X.

Furthermore, the conjunction of 2.1.1 and 2.1.2 plainly implies the

following

2.3 Corollary: For a preorder r C X2 on a topological space

X, being closed is equivalent to the condition that, for each

(x, y) C rc, x has an increasing nbd disjoint from some decreasing

nbd of y.

The next proposition relates our earlier observations to

separation properties of X via antisymmetry of r C X2

2.4 Proposition: Let r Cx 2

ological space X. Then

if r is semiclosed, and

space) if r is closed.

be a partial order on a top-

X is T
1

(i.e., a Frechet space)

X is T2 (i.e., a Hausdorff
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Proof: Suppose x, y e X are distinct, so that either

(i) x ~ ry or (ii) y T Fx. Assume that r is semiclosed.

Suppose that (i) holds. Then (ry)c is an open set to which

x belongs and y, by the reflexivity of r, does not;

similarity, we see that (xr) is open set to which

y belongs and x does not. Also similarly, if (ii) holds,

then (rx)C is an open set to which y belongs while x does

not, and (yr)c is an open set to which x belongs while y

does not. This shows that X is T
1
, proving the first half

of the proposition. To prove the second half, we note that, if

r is closed, then, whether (i) or (ii) holds, 2.1.2 applies,

so that x and y have disjoint nbds, i.e., X is T2. This

completes the proof.

3. Consequences of Connectivity

Connectivity plays a great role in the pioneering work of

Eilenberg [5] on ordered topological spaces, and we open this

section with, essentially, a rewording of one of his early results,

including proof for the sake of completeness.

3.1 Proposition: Let X be a connected space and r C X2 a

semiclosed complete antisymmetric relation. Then r is transitive

(see also 1.1), hence rc is a total order.

Proof: Suppose z e ry and y E Tx holds for some, x, y, z E X.

Then rCy CX \ {z}, while 1.2.2 implies that X \ {z} = rzU zr

which is the union of two disjoint sets Fz and zF, each of
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which, by semiclosedness of rc is open. As X is connected,

so is rCy; hence, either rCyc rz or rCyc zr. As y E rCy

by reflexivity (from completeness) of rc, and since y E zr

by assumption, we must have rCy c zr. But, also by assumption,

x E yr r-ly, and 1.2.1 has r-lyC rFy. Hence, x £ zr, i.e.,

z E rx, whereby r is seen to be transitive. Then 1.3.1 implies

that rC is transitive, hence a total order, as to be shown.

3.2 Proposition: Let r CX 2 be a preorder on a connected space X.

Then r is closed iff it is semiclosed.

Proof: We state "only if" merely for completeness, as it

is already given by 2.1.3.

To see "if", assume r semiclosed, and suppose (x, y) £ rC

Combining 2.1.2 with the fact that r = A is reflexive and thus

rx is the smallest increasing set containing x while yr is

the smallest decreasing set containing y, we see that rxnyF = 0.

Define Z = (rx)C n (yr) c
. Z cannot be empty, since this would

imply X = Zc = rx U yr, a contradiction of X being connected,

since rx and yr are closed by assumption and disjoint by

demonstration. Let z E Z, and define U = (zr)c and V = (rz)

By definition of Z, x £ U and y E V, while U and V are

open. As the complement of a decreasing (increasing) set, U is

increasing (V is decreasing). Thus, 2.1.1 applies, so that r

is closed. This completes the proof.
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3.3 Corollary: Let X be connected and rcx2 a semiclosed complete

antisymmetric relation. Then r is a closed total order and X

is Hausdorff. Furthermore, each point of X is a cutpoint, the

infimum or the supremum of X, and, if X is compact, then

X is a tree. [N.B. Given X connected, x c X is called a

cutpoji t iff X \{x} is not connected. Points y, z E X are

said to be separated by (a cutpoint) x iff they belong to

distinct components of X\ {x}. A tree is a continuum (i.e., a

compact connected T2 space) whose each two distinct points are

separated by some point.]

Proof: That r is a closed total order follows directly from the

conjunction of 3.1 and 3.2. Then 2.4 implies that X is Hausdorff.

Using 1.2.2, X\{x} = rcx U xrc for each x c X, where this is

a decomposition into two disjoint sets which are open by semi-

closedness of r. Thus, x is a cutpoint if rFx 0 # xrC .

If rCx = 0, then X = rx, i.e., x is an infimum and is unique

by antisymmetry of r. If xr = 0, then x is seen, similarly,

to be the supremum of X. If X is compact, then it is a con-

tinuum, and if x and y are distinct points of X, no generality

is lost by assuming x e rcy, from which it is straightforward to

show that connectedness of X and semiclosedness of r implies

the existence of a point z c X with x lying in rFz and y
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in zFr, showing that:a X is a tree and completing the proof.

Actually, the very first consequence in the last corollary

implies that if r is a semiclosed total order on a connected

space X, then c is disconnected (since r is now closed

and & is the union, by 1.2.2, of the two disjoint sets r
c

and (Pc)~- each of which is open by closedness of r). This

is a rewording of a "half" of the first of three main theorems

of Eilenberg [5, Theorem I, p. 40], the other "half" of which

states, conversely, that ' & is disconnected for a connected

space X only if X can be endowed a semiclosed total order.

For what follows, we will need Nachbin's [9, p. 28]

generalization of the familiar notion of a normal space, namely,

that of a normally preordered space. A topological space X

equipped with a preorder rC X 2 is said to be normally preordered

(by r) iff, for every two disjoint closed sets Po, P C X such

that P is decreasing and P1 increasing, P and P1 have

disjoint open nbds U and U1, respectively, with U de-

creasing and U1 increasing. We need some further terminology.

Let r be a preorder on a topological space X. If Y C X, then

the smallest increasing (decreasing) closed set containing Y will

be denoted by I(Y) (respectively, D(Y)). ·If Y, Z C X, we will

write Y < Z to mean that D(Y) n I(Z) = 0; we will write

Y << Z to mean that Y and Z have disjoint open nbds U and

V, respectively, such that U is decreasing and V increasing.

We will use the following simple characterization theorem 19, p.2 9 ]:
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A topological space X equipped with a preorder is normally

preordered iff Y << Z whenever Y < Z (Y, Z C X).

3.4 Theorem: Let X be a connected space completely preordered by

a semiclosed relation rC X 2 . Then X is normally preordered

by r.

Proof: Let A, B CX and suppose A < B. Assume A $ 0 $ B,

for otherwise A << B trivially. Since D(A) and I(B) are

closed and disjoint nonempty sets (A CD(A) and B CI(B), by

reflexivity of F), connectivity of X clearly implies that

there is a point y c X such that y ~ D(A) U I(B).

As r is a preorder, the smallest increasing set containing

y is ry and the smallest decreasing set containing y

is yr. As r is semiclosed, D({y}) = yr and

I({y}) = ry. By transitivity of r, decreasingness of D(A)

and increasingness of I(B), y g D(A) U I(B) implies that

D(A) n ry = 0 = yr n I(B), i.e., that A < {y} < B. Thus, r

being semiclosed, FCy is an open decreasing nbd of A and

yr and open increasing nbd of B, and rCy n yr c
= 0 by

transitivity of r. Hence, A << B, showing that X is normally

preordered by r.

The following theorem of Nachbin [9 , Theorem 2, p. 36]

gives us Urysohn's famous extension theorem for continuous real-

valued functions on a normal space when it is noted that a

normal space is simply a space X normally preordered by the



discrete partial order A CX 2 and X is considered to be

normally preordered by .

Theorem: Let X be a space nrrmally preordered by r, and let

P CX be a closed subset such that fp: P + E1 is a bounded

real-valued continuous function preserving r [i.e.,

y e rx => fp(y) > fp(X)]. For each X s E1 , denote

ACA) = {x e P{ fp(x) < } and B(X) = {x e P{ fp(x) > X}.

Then fp can be extended to some bounded (real-valued) continuous

r-preserving function f: X + E1 iff A(X)'< B('). whenever.

x< x

Our immediate motivation for recording this theorem is its use

in proving the following

3.5 Theorem: 'Let X be a space normally preordered by a relation

r C X 2 such that E = r n r- 2 is semiclosed. Then there exists

a bounded continuous real-valued function f: X + E1 preserving

the preorder r.

Proof: To avoid triviality, assume X # 0 and choose an arbitrary

point p c X. Define P = Zp. As . is semiclosed, P is

closed. Arbitrarily choose 7r e E
1

and define fp: P + E as-

the constant fp = r. Then fp is trivially bounded, continuous

and r-preserving. Now choose A, A' E E1 such that X < A'.:

Defining A(X) and B(X) as in Nachbin's theorem above, the

theorem requires only for us to show that A(A) < B(X'). Now

either (i) < X or (ii or (ii) A' < or < < '. In

case of (i) or (iii), B(A')= 0, so that I(B(X')) = 0. In

case of (ii), A(A) = 0, so that 'D(A(X)) = 0. Thus, in all



-17-

cases D(A(A)) n I(BQa')) = 0, showing that A(A) < B(A'). We

conclude that there exists a bounded, continuous, real-valued,

F-preserving f: X + E1 with, in fact, f(P) = r.

3.6 Corollary: (See 4.1.1 below)

4. Applications in the Theory of Preference

This section will illustrate how the methods so far presented

may fruitfully be applied in social analysis. The chosen specific

area of application is the theory of preference, otherwise known

to economists as "utility theory".

4.1 Representation of a Preference Relation:

A celebrated result in this theory is Debreu's [1

Theorem I, p. 162] following first "representation"

Theorem: Let X be a separable connected space completely pre-

ordered by a semiclosed relation FOX 2 . Then there exists a

continuous real-valued function f: X + E1 preserving F (in

fact, representing r, i.e., obeying y £ rx iff f(y) > f(x)).

The first contribution of our results in the previous sections

to our present area of application consists in subsuming Debreu's

just-stated theorem as a direct corollary of the more'general

4.1.1 Corollary: Let X be a connected space completely preordered

by a relation FrX2 . Then there exists a bounded continuous

real-valued representation f: X + E1 of r iff r is semiclosed.



-18-

Proof: By 3.4, X is normally preordered by r if r is

semiclosed. If r is semiclosed, then so is Z, whereby 3.5

directly yields a bounded, continuous, r-preserving function

f: X + El (which, by completeness of r, is, in fact, a represen-

tation of F), as sought. The converse is obvious.

In comparing 4.1.1 with Debreu's indicated theorem, it will be found

that the hypothesis of 4.1.1 is weaker, missing the separability

of X, while its consequence appears stronger, guaranteeing a

bounded f of the desired sort. Of these differences, it must

be remarked, the latter should not be considered important or,

for that matter; real, as we can always use the bounded function-

f/f+l if f > O

g=

f/f-l if f < O

instead of f whenever f happens not to be bounded, and g ob-

viously has all properties desired of f. The absence of the

separability assumption for X in 4.1.1, however, must be viewed

as a strict improvement with some important "practical" con-

sequences - from a technical viewpoint for the theoretician

concerned with matters of preference. [It is a standard top-

ological fact that a product space X = IX
e

(with the product

topology of {Xe[ a e A}) is connected iff each X is con-

nected but that the following restrict the product invariance of

separability and 2° countability: (i) X is separable iff each
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Xa is separable and all but at most 2#0 of the X's consist of

single points, where #o is the cardinality of the set of natural

numbers ("aleph naught"); (2) X is 20 countable iff each X

is 20 countable and all but # of the 'X 's are indiscrete.

(See Marczewski [ 8 ] concerning (1).) Thus, for instance, a

topological vector space obtained as the product of more than

2# o copies of the real line is neither separable, nor, indeed,

2° countable, while every convex subset is (in fact arcwise-)

connected, so that, in this case Debreu's second representation

theorem [ 1 , Theorem 2, p. 163] is just as inapplicable as his

first, while 4.1.1 can be used. Furthermore, interpreting Herstein

and Milnor's [ 7 ] mixture set in the natural sense of convex

set here, there are connected sets in this vector space, notably

(from the viewpoint of generalized Kuhn-Tucker theory) the star-

shaped sets, which will not be mixture sets, so that an instance

is found where the representation theory of [ 7 ] - which, in-

cidentally, deals with the case where r is a total order - will

not apply while 4.1.1 will.]

Applications of 4.1.1 extend also into the next subsection.

Another simple fact to be used there but properly belonging under

the present heading is the following

4.1.2 Lemma: Let r C X2 be a complete transitive relation on a

connected space X, and let f: X + E1 be a r-preserving

real-valued function. f is (a) continuous (representation of

r) iff r is semiclosed and f(X) is connected.
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Proof: It is obvious (and stated merely for completeness) that

r is semiclosed and f(X) is connected if f is continuous.

We prove only the converse. For this it suffices to show that

the inverse image f- (W)C X of every subbasic open set

W C E1 is open if P is semiclosed and f(X) connected, and

we take W = {w e Ell w > wI } for some arbitrary w E,

remarking that the argument will be entirely similar for

W' = {w £ Ell w < w }. If w * f(X), then connectivity of

f(X) implies that either (i) w < w for all w e f(X) or

(ii) w > w for all w E f(X). If (i), then f-'(W) = X;

and if (ii), then f-l(W) = 0; in either case f-l(W) is

open. Now consider w e f(X), and let w = f(x ). Then

c
f-l(W) = x C , by the fact that r is complete and f r-pre-

serving. Therefore, if r is semiclosed, then f-l(W) is

open, and this completes the proof.

4.2 The Structure of Preference Relations and Their Representations:

Otherwise stated, the topic of the present subsection is

that of "aggregation" and, in particular, the "separability" -

additively or in general - of utility functions. The immediate

motivation is to extend the complete characterization by Gorman

[6] of the "separability" and, in general, the structure of

utility functions.

This characterization was given by Gorman under the assump-

tions, among others, that the space of prospects was (topolog-

ically) separable and arcwise connected. Arcwise connectivity
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was effectively shown [10] to be relaxable to connectivity for

Gorman's results, being so for his underlying Lemma 1 [6,

p. 387]. It appears that the only reason for postulating

separability as an assumption was to ensure the existence of

continuous utility functions, invoking Debreu's first rep-

resentation theorem stated in 4.1. As 4.1.1 now outrules any

need for this theorem and for the space of prospects to be

separable, one quickly intuits that Gorman's separability

assumption may also be eliminated. Here we show that his

Lemma 1 can be extended so as to apply whether or not the

space of prospects is separable (or arcwise connected), so

long as it is connected, and encourage the reader to check that

this actually yields a corresponding extension of the whole of

Gorman's results in [6], so that his assumptions of separability.

and arcwise connectivity can, in fact, be diminished to con-

nectivity throughout.

I consider this as opportune a moment as any to indulge

in the premature expression of a thought, as fuzzy as it is in

my mind, that what we, including Professor Gorman, are looking

at is a topic of interest in its own right as having to do

with the "structure", in general, of relations and of maps pre-

serving them, deserving at least. a glance by specialists in

functional equations and semigroups - if, indeed, they had not
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already seen through the matter. And, continuing to bleed out

this thought, Professor Gorman's analysis of the structure of

Al (see 4.2.1) is probably a key to more doors than meet the

eye in this dimly illuminated hallway.

We now turn to more concrete matters. Throughout,

X = N X will be the product of a family {XI a E A} of
A

spaces, and r C X 2 will be a relation on X. Given any

B c A, we will denote XB = H X and XB = X Projection
B Ba

of X onto a factor XB will be denoted by lB' and pro-

jection of X2 onto XB will be denoted by TB' Finally,

for each B C A, we define two relation-valued maps y and

YB on X by

B B
y(x ) = f N [XB x {xB}]2 and

B 2 B
YB( ) 7fB (y(X )),

lower case Latin denoting, as from here on,

of the respective capital [e.g., x c X, xB

and xB denoting- rB(X), etc.

a generic element

B B
c XB, x XB , etc.],

Definition: We say that A is semidivisible by B or

that B is a sector of A, and we write AIB, iff yB

is a constant function (in which case its constant value on

B clearly coincides with Tr2(r), which latter we denote

by rB). We say that A is divisible by B, that B

divides A, or that B is a complemented sector or factor

of A, and we write AIIB, iff AIB and AIBc. Finally,

we define

4.2.1
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Al = {Bl AIB},

All = {BI AIBI}.

0

The following are clear.

Proposition: 0, A e Al CA|.

Proposition: For any B, C c A

(xC x c e X,

,(x B n c: :y(xB) n

y(xB U C) y(xB)n

In fact, for any subset B C2

(x e X, B CA),

and any x = (xB, xB) =

Y(xc) 

r (xC).

denoting

and

TB(x) = xB

¥(xD) ? BDB y(xB ) OyCx
E

),

where D = BB B and E B B.

4.2.4 Proposition: Al is closed under arbitrary intersection,

i.e., B CAl => BB B E Al. [Thus, Al together with the

partial order C of containment is a complete lower semilattice

(Al,C) with Inf(Ai) = nA = 0 and Sup(AJ)= A. Thus,

Al together with the binary operation n A12 + Al of

intersection is a commutative band (band: semigroup of idem-

potents) (Al, n ) with identity element A and zero 0.]

Proof: Merely observe that the containment y(xD) D

of the last proposition becomes an equality whenever

In that case YD is a constant function, as yB is.

r y (x )
B CAI.

so for

4.2.2

4.2.3
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each B C B; thus, D e Al.. [The parenthetical note is

now obvious.] 

Thus, if we know that B is a set of sectors of A, then

we know that the intersection of the members of any subset

C CB is also a sector of A. For All we have the obvious

4.2.5 Proposition: All is closed under complementation, so that,

if B and C are factors of A, then B \ C and C \ B,

as well as BC , CC, B n C and Bc [ Cc = (B U C)C are

sectors of A.

We now focus our attention on the case where r is a pre-

order. In this connection, the following two propositions

collect some elementary facts, the proofs of which are straight-

forward.

4.2.6 Proposition:- If a relation r CX 2 on a product X = H X
A

satisfies any one of the properties transitivity/reflexivity/

symmetry/antisymmetry/completeness, then so does each

projection r F= 'B(r) (B A).

B C
4..2..7 :Proposition: Let r CX 2 be a relation on a product space

X'= I Xa, such that r = rB x r
C

. Then r is transitive/
A

reflexive/symmetric/antisymmetric, respectively, if rB and

rC are so. Furthermore, F is irreflexive if at least one

of the projections rB and fr is so.

Thus, in particular, if r is a (complete) preorder', then

so is each projection B (B C A). The relation between rB

. A.

.
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'

.
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s
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and its projections rB is stronger for sectors B of A.

In fact, one may see that the structure of Al and of -All

bear a systematic kinship with the "structure" of r, by

the latter of which we refer, broadly, to the set of relation-

ships obtaining between r and certain of its projections rB .

Both the "structure" of r and that of the collections Al

and All are related to the "structure" of functions u: X E

preserving r, more particularly to the forms in which such

functions can be written in terms of certain functions

uB: XB - R. Information gained about either of these "structures"

seems to help illuminate the others. For this reason we now set

up some apparatus to deal with the "structure" of r- preserving

functions u: X + E1 . Let u be such a function for a preorder

r CX 2 , and let x £ X. We use x as a "reference point" to

define B: XB R by uB(xB) = u(xB , xB) (B CA). It is

-BJ 2clear that uB preserves the preorder r n (XB x {x })2 on

-B) B
XB x {xB}. In the case where B E Al, and only in this case,

however,-B XB 2however, varying x in X does not alter (the projection onto XB

of) this preorder considered as a relation on XB. Thus, in

this case, and only in this case, we abbreviate uB to uB.

Some clues involving the form of u and pairwise disjoint

families of sectors of A are furnished by the following

4.2.8 Lemma: Let r CX x X be a complete preorder on a nonempty

product X = H X , let u: X + R be a real-valued represen-
A i

tation of r, and let {IB I Cr N- be a partition of A \ C
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for some C C A. Then the following are equivalent.

4.2.8.1 There exists a family v: XE + RI n e N} of real-valued

functions and a function f: X
C
X I vq(XB R increasing
N q

in each vn (n e N), such that u can be expressed as

u (x) = f(X c, {vI(xB ) }eN )

4.2.8.2 For each n E N, B is a sector of A.

Proof: (ad 4.2.8.1 => 4.2.8.2): Assume 4.2.8.1, and fix

attention to an arbitrary n E N and an arbitrary ("ref-

erence point") x e X. Suppose that x c r y, i.e.,

u(i) > u(y), for some x = (xB, xBp), y = (YB , x B n ) E X.
1 - 'n

As f is increasing in vn, we then have vq (xB ) 

v (yB . Suppose x = (xB , 4 n), y= (YB ' x 7 )n) X.

Clearly, the proof rests on being able to show that

u(x) > u(y). Now (xC, {v (xB )}pEN) can differ from

(Yc' {v~(xB )}CpN) only in so far as vi(xB ) differs

from vn(y
B

), since the B 's are pairwise disjoint.

But v(X ) > vn(B ) has already been established. As

f is increasing in vq, this implies that u(x) > u(y),

i.e., that x e ry. Thus, yB is identically rB
TI Ti

whereby AIB . As n c N was arbitrary, we have shown

4.2.8.1 => 4.2.8.2.

(ad 4.2.8.2 => 4.2.8.1): Assume 4.2.8.2, denote

v(x C) {u B (XBn )}cN , and define w: X XC X (X) by
Ti Tn



w(x) = (XC' v(xC)). All we need to show is that the diagram

w

x _ w(X)

u(X)

commutes for some function f, and for that it suffices to

show that u is constant on the inverse image w-l(W)

of each w E w(X), since sending f: w i+ u(w-l(w)) then

defines f as the desired function. [If N were a finite

set equal to, say, M = {O, ..., m}, then the constancy of

u on w
-
L(w) for each w C w(X) would be clear as a con-

sequence of having A]B for each n E N.] To show this

in general, i.e., for arbitrary N, we use transfinite

induction.

Thus, consider some well-ordering of N, and denote

initial segments of elements rq N by N(n). For each

p E N, define

B= U B and C =ANB,
N(P) rP

and the functions wU and w_ on X by

w (x) = (x * {u ( xB )} EN(p)) and
P Cl B B .r N(

w1 (X) = (XC (XB { (XB )}nN(U))'

where CU = CU\ BI. Now we suppose that u is constant on
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wl(t*) for each w* of the form w* (

{uB (xB )}q£NX)) and show that, given an arbitrary
B B nTEN (1)
fl Tq

WI P( ' Pn IEN( ) where pX uB (XB) (A N),

-P

exists an w whose projection into XC coincides with

that of w' and whose projection into UB (XB), coincides

for each X s N(P), with that of w'; furthermore, we,

may select W* so that its projection into XB is a

point xB such that uB (xB ) = p . By hypothesis,

u(w 1 (w*)) is some (constant) u
°

E R, and, by the way in

which w* was selected, there is a point x' £ w!(wC')

such that u(x') = u° . But, by the fact that AJB , u then

takes the (constant) value u° on each point x E ws (').

By application of the principle of transfinite induction,

for each w £ w(X), u is constant on w 1 (w), and this.

completes the proof.

To economize on proofs which are either obvious or both

straightforward and tedious, some further facts are given in

the form of an

4.2.9 Exercise: If u in 4.2.8 can be expressed in the form

indicated in 4.2.8.1, then

4.2.9.1 for each r1 s N, vq is increasing in uB , so that it

represents r

4.2.9.2 f is "strictly increasing" in p= {Pn}i£N , where
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P e vnX B ) for each n C N, in the sense that (a) if

Pq > P' s vq(X
B
) for each rq E N, then f(xc, p) >

f(X C, p') for each x C E XC, and (b) if the hypothesis of

(a) holds with, furthermore, p% > p' for some X E N,

then f(xC, P) > f(xc, p ) for each xC E XC;

4.2.9.3 u can be expressed as

u(x) = g(xc, {u
a

(x )} EN)

for some g.

So far in this subsection, the discussion invoked no

topology. The next lemma, also proved in [10], is concerned

with the continuity of the "macroscope" functions f (and g)

as in 4.2.8.1 (4.2.9.3). For the purposes of that lemma and

some later developments, it is useful to agree on some notation.

Accordingly, from now on M will denote the set {0, 1, ... , m}

of the first m + 1 non-negative integers, and, for each i E M,

Mi will denote M \ {i}. Given a family {Xi. i E Ml of

sets indexed by M, we will denote X = H Xi, X = .X. for
M i M

products, and xi E Xi, x
i

E X
i
, x X for generic elements,

while for projections we will adhere to x = (xi, x').

4.2.10 Lemma: Let X = T X. be a connected space completely 'pre-
M i

ordered by a semiclosed relation r CX x X, such that

{{i}| i £ M
©
} CMI. Let u: X + E1 preserve r, and,

for each i E MO, let vi: Xi E1 preserve Fi, denoting

the identity map of X by v . Define v: X + X x Em
o o o
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by v(x) = {viCxi)}i and let f be a function for which

the diagram

V

X - v(X)

\'u I f

u (X)

commutes. If u(X) is connected, then u and f are

continuous.

Proof: Assume u(X) connected. Then u is continuous by

4.1.2. Using the apparatus of the proof of 4.1.2, to show

that :f is continuous it suffices to show that f-1(W)

is open for each subbasic open W C Ed. We take

W = {w g Ell w > w*} for some w c El and show that

f-1(W) is open, remarking that the argument is similar for

W' {w E1 w < w*}. If w* e u, then connectivity of

u(X) implies that either (i) w* > u(x) for all x E X

or (ii) w < u(x) for all x £ X. If (i) holds, then

u-(W) = X, so that commutativity of the diagram yields

f-'(W) = v(u-l(W)) = v(X), whereby f-l(W) is open. In.

case of (ii), u-l(W) = 0 = v(u-l(W)) = f-l(W), so that

f-l(W) is again open. So, assume w E u(X) and, say,

w= u(x*). As u preserves r and r is complete, we

have u' (W) = x* c, which is open by semiclosedness of r

(or by continuity of u) and is connected by connectivity of



-30-

X. Hence, for each i E M, the projection

Pi = X(u-(W)) CXi is open and connected. Now vo(Po )

is open trivially. On the other hand, for i £ M° , as

v
i

preserves Ti, we have vi(PI) {w E vi(Xi)
I
w >

vi(xi)}, which is open. Thus, v(u-l(W)) = I vi(Pi )
is

open, so that the commutation f'l = v o u- 1 yields

f'l(W) open, from.which we conclude f to be continuous.

This completes the proof.

4.2.11 Corollary: Let u: X + El be a continuous representation

of a complete semiclosed relation r c X x X on a connected

product space X = I Xi. Then the following are equivalent.
M

4.2.11.1 for each i C M° , {il} MI;

4.2.11.2 for some family {vi.: X
i

+ E'l i c MO) and some con-

tinuous f: X x H vi(Xi) + E( increasing in each
M o

v i (i C M°), u can be expressed as

u(x) f(xo v (x), ... , Vm(xm)).

Furthermore, in this case, f is "strictly increasing"

(see 4.2.9.2) in p = {P i}ico, where pi C vi(Xi )

for each i C M , and, for each i e M , v. is a

representation of ri.

Proof: The stated equivalence directly follows from the

conjunction of 4.2.8 and 4.2.10. The rest directly follows

from 4.2.9.1-2.

This last corollary extends the fundamental Lemma 1 on which
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Gorman erects his formidably complete characterization of "The

Structure of Utility Functions" 16] in the case where X is

arcwise connected and separable. [It also extends the result

which Debreu set out to prove in 12, lines 5-18, p. 22].] Our

extension here consists of relaxing the assumptions on X to

connectivity alone. It was shown earlier [10] that arcwise

connectivity could be relaxed to connectivity and promised

there that the separability assumption, too, could be deleted,

as its role consisted of allowing application of Debreu's first

representation theorem, stated above as a corollary to 4.1.1.

Given 4.1.1, we now have no need for the separability assumption

on X, and the earlier promise is met.

The main question, however, is whether the assumptions of

arcwise connectivity and separability, made throughout by

Gorman [6] can be relaxed throuighout 16] to connectivity alone.

Upon studying the mentioned paper, I find it safe to state that

my conjecture is Yes. If the proofs of Gorman had to be mod-

ified extensively to support this conjecture, then here would

be a good place to do that. Fortunately, this does not appear

to be the case, so that the (well-advised) reader who also

reads Gorman's paper will find, I think, that Gorman's

characterization applies so long as X is connected. [In fact,

if Gorman's Lemma 1 is replaced by 4.2.11, the only necessary

modification I can find in his proofs is in that of his basic

theorem (Theorem 1), where 'arc connected' in the first line

of 2.18 (p. 372) should be replaced by 'connected', in which
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case the theorem, and hence the paper as a whole, will be seen

to be preserved.] Thus, the best service to be offered here to

the reader seems to be to recommend Gorman's mentioned paper.

Hence, we let this last sentence be a pointer toward the cited

study by Gorman which has been the source of motivation for this

subsection and the validity of which has now been extended.

4.3 Social Optimum and Consensus - A Simple Existence Result:

The result (4.3.2) we aim to demonstrate here is, indeed,

very simple.. We are given a family {ra C X2 | a E A} of

transitive relations a , each on the same set X. For each

subset B C A, rB now denotes the intersection rB =n ra,

and we simplify r{a. to ra and rA to r. With respect

to r, the set of maximal points (supremal points) in X is

denoted by Max X (Sup X), where the standard definitions

Max X = {x E X I (x, y) E r => (y, x) £ r},

Sup X = {x E X I X x {x} cr}

apply. Obviously,

4.3.1 Proposition: Max XD Sup X.

The economist will recognize that Max X is the set of

Pareto-optimal points. Sup X, on the other hand, is a rather

more interesting set, consisting of all those points which are

"superior" to every point in X unanimously from the viewpoint

of each a (Ca E A). Of course, Sup X may very well be
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empty, even if Max X is not. In 4.3.2 we show conditions

under which both are non-empty.

Toward that, we agree to say that a relation r on

a topological space X is upper semiclosed iff F x

is closed for each x E X. By the condition of Consensus

in the Small (CS), we mean

CS: For each pair (B, Y) of nonempty finite

subsets BCA and Y CX,

n r y i 0.
yEY

Finally, we are able to state and prove the intended

4.3.2 Proposition: If X is compact and each (transitive relation)

ra CX 2 is upper semiclosed (a e A) while the condition
a

CS is satisfied, then Sup X : 0.

Proof: As each r is transitive, so is r. Hence,

Sup X = fr x. Clearly, CS implies the finite intersection
XxA

property that nra x 0 0 for each finite F C X x A. If

r x is closed for each (x, a) £ X x A, then CS combined

with compactness of X implies that q r x 4 0, as to be

shown.

We may refer to Sup X # 0 as the condition of Consensus

in the Large (CL). In that case, 4.3.2 reads to yield a suf-

ficient condition, namely that X is compact and each r

upper semiclosed (a e A), under which CS => CL, i.e.,
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CS <=> CL, as CL => CS is always true. In practice, X is

often compact while the r 's are accustomed to be assumed

semiclosed complete preorders, hence certainly upper semiclosed

transitive relations. Perhaps this yields a practical relevancy

to 4.3.2. I do not know whether it is worthwhile obtaining

corresponding results by considering the case with a measure

space of agents, following Debreu [3] and others.
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"Order, Topology and Preference" Errata

1. Page 9, line 12 should read:

"decreasing, since U f V = 0. Thus, (U x V)n r = 0, whereby

2. Page 11, 3.1 should read:

Lemma: Let X be a connected space and r C X2 a semiclosed complete

antisymmetric relation. Then r is transitive, hence F
c

is a total order.

.3. Page 12, 3.2 should read:

3.2 Theorem: A complete antisymmetric relation on a connected space

is a closed total order iff it is semiclosed.

Proof: "Only if" follows directly from 2.1.3. To prove "if", let

'X be a connected space and rC X2 a semiclosed, complete, trans-

itive relation on X. By 3.1, r is a total order. We now show that

rC is open. This is trivially so if ,c = 0, so suppose

(y, x) E r c , i.e., x e r y and y e xrC. As r is semiclosed,

xrc rCyy is a union of two nonempty open sets. Furthermore, given an

arbitrary z c X, if z t xrC, then z C xr and, by transitivity of

r, z E rCy. Thus, xC xrCU rCy. X being connected, there must,

therefore, be some z c xrc n rCy. Now (zrc) x (Pcz) is a nbd of-

(y., F). , et aE c
(y, x)-. To see that this nbd is 'contained in rc, let a E zc and 

b c rcz. By completeness of r, we then have a e rz and b c zr

(i.e., zerb), so that transitivity of' r implies a e rb. Thus,

b e ra would imply, by antisymmetry of r, that b - a, contradicting

the obvious fact that zrC n Cz = 0. Hence, b c tCa, i.e., (a, b)

: rC . Thus, czr c) x (rCz) C r, showing that rc is open, i.e.-, that

r is closed.



4. Page 13, lines 11 and 12 should read:

Proof: That r is a closed total order follows directly

from 3.2. Then 2.4 implies that X is Hausdorff.

5. Page 15, line 9.should read:

reflexivity of r), connectivity of X implies that

6. Page 15, lines 18 and 19 should read:

yrc an open increasing nbd of B, and FCy n yrc = O by

completeness of r, Hence, A << B, showing that X is normally

7. Page 18, line 14:

there should be a minus sign (-) before f/f-l if f < 0

. .. ./. e . S. * .. . . . . . *.


